Brownian motion and Stochastic Calculus
Dylan Possamai

Assignment 11—solutions

Exercise 1

Let B be an (F,P)-Brownian motion and M an (F,P)-martingale such that dM; = oM;dB; with o > 0 given and
My = 1.

1) Give the Itd decomposition of Y; := (M;)~t, ¢t > 0.
2) Let Q be the probability measure defined by dQ/dP := M. What can you say about the law of ¥ under Q7

3) Let K > 0 be given. Show that

EF[(Mr — K)*] = KE* K;{ — MT> +] :

1) It suffices to apply Itd’s formula, noticing also that M, = £(oB);

1
Y, = — 5 dM, + MPdt = —oYidB; + 0?Y,dt.
t
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2) First, Novikov’s condition gives us immediately that M is a martingale, and we can use it as a change
of measure, say at least on Fr. Then by Girsanov’s theorem (and the symmetry of Brownian motion)

B;@ = —B; + ot,

is an (F, Q)—Brownian motion, so that
dY; = oY, dBZ,

and thus the law of Y under Q is the same as the law of M under P.
3) We have

EF[(Mr — K)"| = KE*[Mp(K™' — Y7)t] = KER[(K~' — Y7)T] = KE*[(K ' — Mp)*].

Exercise 2

The goal of this question is to prove Novikov’s condition which gives a sufficient requirement for an exponential (local)
martingale to be a uniformly integrable martingale. Let F := (F;);>¢ be a filtration satisfying the usual conditions.
When N is a continuous (F,P)-local martingale we will write E(N) := exp(N — [N]/2). Suppose that M is a given
continuous (F,P)-local martingale with My = 0, P-a.s.

1) Prove that £(M) is an (F,P)-super-martingale. Moreover, show that if EF[€(M).] = 1, then £(M) is a P-
uniformly integrable (F,P)-martingale.

2) Consider p > 1, e € (0,1), n € (0,1) and p € R. Prove that when M is bounded by a deterministic constant, then
for any ¢t > 0
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for p = p*/(1 —¢).



3) Use 2) and a localisation argument to establish the following: If EF[el™l=/2] < 400 (called Novikov’s condition)
then for all € (0, 1), there exists p > 1 such that

EP{ sup E(UM)”] < o0, and hence EP[ sup S(nM)] < 4o00.
te[0,00) te[0,00)

Deduce that then £(nM) is a P-uniformly integrable (F, P)-martingale, so that EF[€(nM);] = 1, for all t € [0, cc].
4) Using 3) and part of the argument given in 2), show that (again assuming Novikov’s condition) for € € (0, 1)
1 =EP[E(M) o] < EF[E(M)oo]' EF [0 M /21" < BF[£(M) oo ]! EF [eM=/2]% where n:= 1 —e.

5) Combine the above results to deduce that under Novikov’s condition, £(M) is a P—uniformly integrable (F,P)-
martingale.

1) First of all, we know that £(M) is a local martingale. Let us define stopping times 7,, = inf{t > 0 : |M;| >
n} for n € N. Then £(M)™ are local martingales that are each bounded by a deterministic constant, so
they are all martingales. By Fatou’s lemma, we get that for ¢ > 0,

0 < EF[E(M),] =E" {liminfE(M)tT"] < liminf EF[E(M)]"] = 1.

- n— 00 n— 00

This yields integrability. Clearly £(M) is adapted. Consider now 0 < s <t. Then

s . Tn 13 . P Tn
E(M)s = hnrglgfé'(M)s = hnrggf]E [E(M)7 | F]
> Ep{lim inf £(M)7" ]-‘S} = EF[E(M);|Fs], P-as.
n—oo

So £(M) is a (non-negative) supermartingale as required. We saw above that £(M) is bounded in
LY(R, F,P), so £&(M); converges, P-a.s., to an (integrable) limit £(M)., as t — co. Assume now that
EF[€(M)s] = 1. It will suffice to prove that for ¢t > 0

E(M); = EF[E(M) 0| Fi], P-aus.
By Fatou’s lemma, we see that £(M), > EF[£(M)|F:], P-a.s. and hence
EP[|£(M): — EFIE(M)acl ]| | = B [£(M), — EFIE(M)oc| Fi]] = EFIE(M),] — EF[E(M)ac] < 1~ EF[E(M)ac] = 0,
which immediately implies the claim.

2) Since M is bounded by a deterministic constant, so is £(nM) and hence £(nM) is a martingale. The
first claim is thus an immediate application of Doob’s inequality. For the second inequality, let us write

(eth*[nM]t/Q)p — eP1Mi—p[nM]:/2,(p—p)[nM]:/2
Applying Holder’s inequality with exponents 1/(1 —¢) and 1/¢ yields
EP [(eth—[th/z)P} <EP {(epth—p[nM]t/z)W*ﬂ oy [(e@—p)[nM]tﬂ)l/E]E .
If p=p?/(1 —¢), we see that

P [ (et etatle/2) VA — B¥ g/ M),) = 1, with = np/(1 - 2),

since £(n'M) is a martingale starting from 1. Combining the results in the two previous displays thence
yields the claim.



3) Fix n € (0,1). In 2), we showed that for p > 1 and ¢ € (0, 1),
P 2
p p/(1—¢)—p 5[Mlx
EP{ sup E(UM)f] < <p1> ]Ep{exp( /( ) 772[ ] >}

t€[0,00) € 2

whenever M is bounded by a deterministic constant. To see that this also holds without the boundedness
assumption, we may apply the above result to M™ to see that

]EP{ sup (5(7)M)[”)p} < <p>p]EP|:exp <P2/(1—5)—P7]2[M]Tn)]

te[0,00) p—1 € 2

() om0

and letting n — oo (using monotone convergence) yields the required generalisation.

We will now show that we can take p > 1 and ¢ € (0,1) such that
2 —e) —
P2 b,
€
One way to see this is to write p =1+ ) and Taylor expand to obtain
p?/(1—¢) P (14254 0(6%)(1+e+0(e?) —1—6

- = n* = (1+26+0(e) + 0(6%)/e)n?, as € and 6 go to 0.

Since 1? < 1, the above inequality can therefore be satisfied by first choosing ¢ > 0 and then § > 0
sufficiently small. For these values of p =1+ ¢ and ¢ € (0, 1), therefore

E° L S[Ep )5(77M)4 < (p/(P - 1))pEP [e[M}“/Q] < 00.
€10,00

In particular, £(nM) is a uniformly integrable martingale and EF[£(nM),] = EF[£(nM)o] = 1 for all ¢ € [0, o0].

4) Firstly note that since EF[e[M]=/2] < oo, EF[[M]] < co and hence M is an L?(R, F,P)-bounded martingale.
Consider n=1—¢c and p=1/(1 —¢) for ¢ € (0,1). Then using the same argument as in 2), we see that

EP[(‘:(UM)OO] _ gP [ean—[nM]m/z] < E]P’[(enMOQ—p[nJV[]OO/2>1/(1—6)} lfs]EP [(e(p_l)["M]‘”/Q)l/Er
= EP[£(M)oo] '~ EF [e(l—s)[M]oo/ﬂE < EP[E(M) o] °EP [e[M]oo/Q}E’
We conclude by noting that E¥[£(nM),,] =1 as derived in part 3).
5) Finally, by taking ¢ — 0 in the inequality
1 < E(E(M))!“E (e<M>w/2)6

that was derived in (iv), we get EF[£(M).] > 1. By the argument in (i) also EF[£(M).] < 1 and hence
EF[€(M)ws] = 1. The result then follows from the second part of 1).

Exercise 3

Let B be a standard Brownian motion (in some filtration satisfying the usual conditions). Fix ¢ > 0. The goal of this
exercise is to compute the moment generating function of fg B2ds. To this end, fix K > 0 and ¢ > 0.

1) Show that the process D defined by

sAt KZ2 SAt
DZ :exp(n/ BudBufg/ Bidu)7 SZO,
0 0

is a P-uniformly integrable (F,P)-martingale. Moreover, observe that fos B,dB, = (B? — 5)/2, P-a.s., for all
s> 0.



2) Now we define a new probability measure Q via dQ/dP := D_. Prove that under the measure Q, the process
t
W!:= B+ KZ/ B, du,
0

is a standard Brownian motion (in the given filtration). Deduce that under Q, B; ~ N (0, (1 — e~2*")/(2k)). Use
this to prove that

]EIP’ |:e_§ fot Bﬁdu:| _ EQ |:e%(Bt2—t):| — #
cosh(kt)

3) Let B be another standard Brownian motion, independent of B. Show that
t ~
/ (B2 + B2)du 2 inf{s > 0: |B,| = t}.
0
Is it true that f; (B2 +§2)du fa inf{s > 0: |Bs| = -}7

1) Let us consider the local martingale M = —x fOMB dB; so that D = exp(M — [M]/2), P—a.s. We first

observe that second statement [ B,dB, = (BZ—s)/2 for all s > 0, P-a.s., is a consequence of It6’s formula.
Moreover

sAt
0< D, <exp < K / BrdBr> = exp <n/2(s ANt — Bg,\t)> < /2
Jo

for all s > 0. Therefore D is bounded by a deterministic constant and hence a uniformly integrable
martingale.

2) By Girsanov’s theorem W = B — [B, M] is a local martingale under Q. Moreover, we have [W], = s for
all s > 0, P-a.s. (under P and Q), so by Lévy’s characterisation, W is a standard Brownian motion in
the given filtration. Also

At
[B,M] = —/@/ Bgds, P-a.s. (w.r.t. both P and Q).
0

We are now working with respect to Q. Let B’ be the unique strong solution to the following SDE (again
noting that W is a standard Brownian motion in the given filtration)

dB, = dW, — kB.ds, B, =0, P—a.s. for t > 0.

This is an Ornstein—Uhlenbeck process, so we know that B] ~ N (0, (1 —e™?%")/(2x)). It thus suffices to
prove that B; = B;, P-a.s.. To see this, observe that

B! — B, = —/{/ (B.. — B,.)dr, for all s <t, P-a.s..
0

By an application of Gronwall’s lemma, we can deduce that B = B’ as required. Using this, we can
compute

2Kt

. e—T’/2 _
EQ [e%(B?—t)} = | & exp <“(12€Hl_2 —t))dm

—Ht/2/ ( a® 1+ e_%t)

=e —exp| - ————

R V 2 2 2
e—mt/2 1

SO+ 20)2  \/cosh(t)




as required. It only remains to express the expectation w.r.t. Q on the left-hand side in terms of an
expectation w.r.t. P. Using the definition of Q) we get that

(B2 K ¢ KQ t
EQ [eﬂBt—ﬂ = Ep[exp ((Bf —1) — n/ B.dB, — 7/ desﬂ
2 0 2 Jo
=EF [e_§ Jo des] :
3) The moment generating function of inf{s > 0: |Bs| = ¢} is known, and for x > 0

EP [efginf{szoz 1B.1=t}] = COS;(,%) _gP [e’é I Bgds]EP [e’%fot gjds]
_ EP [e—é fot(Bf+B§)dS]'

If the moment generating functions of two non-negative random variables agree, they have the same
law, so the assertion follows. Finally, it is not true that

/ (B2 + B?)ds £ inf{s > 0: |B,| = -},
0

since the process on the left-hand side is continuous while the process on the right-hand side has jump
discontinuities a.s. (we may observe that it is increasing and is left-continuous however).

Exercise 4

Fix a filtered probability space (Q, F,F,P). Let B be an (F,P)-Brownian motion, u a bounded F-adapted and measur-
able process, and fix some xg € R.

1) Show that there exists a unique solution to the SDE

ot t
Xt:xo+/ ustJr/ X.dB,, t >0,
0 0

which is given by
t
0
In particular, if g > 0 and p is valued in R, show that X is also valued in R,.
2) Fix now (z1,22) € R?, as well as two maps a; and ap from Ry x R to R which are Lipschitz continuous and with

linear growth with respect to their second variable, uniformly in the first one. Assume that a; > ao and =1 > xs.
Show that there are unique solutions to the SDEs

t t
XZ::EZ-+/ ai(s,Xﬁ)ds+/ XidB,, t >0, i€ {1,2},
0 0

and that X' > X2,

1) Once again, we have here an SDE with uniformly Lipschitz-continuous coefficients, so existence and
uniqueness of a strong solution is immediate. Then it suffices to apply It6’s formula recalling that

d&€(B)¢ = E(By)d By,

to verify that the solution is given as in the statement. The non-negativity is then obvious.



2) This questions is about a technique called linearisation. First, the assumptions made ensure that X'
and X? are well-defined as unique strong solutions to their respective SDEs. Then, the point is to notice
that we can always write

al(SaXsl) - a2(57X‘3) = al(SaXsl) - aQ(SaXi) =+ /\9(X91 - st)a
where

_ az(s, XJ) —as(s, X7)
As 1= XT_ x2 Lixizxzy,

is a bounded, measurable and F-adapted process by the Lipschitz property of a,. Writing §X := X' — X2,
we get

t t
6X; = (z1 — x2) +/ (a1(s, X1) — aa(s, X1) + As6X,)ds +/ §X.dB;.
0 0
If we now write Y; := e7fo )‘SdScYXt, we get

ot s t
Y, = (21 — x2) +/ e fo Aud“(al(s,xsl) - ag(s,Xi))ds +/ Y:dB;,
0 0

and it then suffices to apply 1) with u, :=¢ fo& Audu (al(s, XD —as(s, Xél)) which is non-negative by assump-
tion.



