
Brownian motion and Stochastic Calculus
Dylan Possamaï

Assignment 11—solutions

Exercise 1

Let B be an (F,P)–Brownian motion and M an (F,P)-martingale such that dMt = σMtdBt with σ > 0 given and
M0 = 1.

1) Give the Itô decomposition of Yt := (Mt)−1, t ≥ 0.

2) Let Q be the probability measure defined by dQ/dP := M . What can you say about the law of Y under Q?

3) Let K ≥ 0 be given. Show that

EP[
(MT − K)+]

= KEP
[(

1
K

− MT

)+]
.

1) It suffices to apply Itô’s formula, noticing also that Mt = E(σB)t

dYt = − 1
M2

t

dMt + 1
M3

t

σ2M2
t dt = −σYtdBt + σ2Ytdt.

2) First, Novikov’s condition gives us immediately that M is a martingale, and we can use it as a change
of measure, say at least on FT . Then by Girsanov’s theorem (and the symmetry of Brownian motion)

BQ
t := −Bt + σt,

is an (F,Q)–Brownian motion, so that
dYt = σYtdBQ

t ,

and thus the law of Y under Q is the same as the law of M under P.

3) We have

EP[
(MT − K)+]

= KEP[
MT (K−1 − YT )+]

= KEQ[
(K−1 − YT )+]

= KEP[
(K−1 − MT )+]

.

Exercise 2

The goal of this question is to prove Novikov’s condition which gives a sufficient requirement for an exponential (local)
martingale to be a uniformly integrable martingale. Let F := (Ft)t≥0 be a filtration satisfying the usual conditions.
When N is a continuous (F,P)–local martingale we will write E(N) := exp(N − [N ]/2). Suppose that M is a given
continuous (F,P)–local martingale with M0 = 0, P–a.s.

1) Prove that E(M) is an (F,P)–super-martingale. Moreover, show that if EP[E(M)∞] = 1, then E(M) is a P–
uniformly integrable (F,P)-martingale.

2) Consider p ≥ 1, ε ∈ (0, 1), η ∈ (0, 1) and ρ ∈ R. Prove that when M is bounded by a deterministic constant, then
for any t ≥ 0

EP
[

sup
s∈[0,∞)

E(ηM)p
s

]
≤

(
p

p − 1

)p

sup
s∈[0,∞)

EP[
E(ηM)p

s

]
, for p > 1,

EP
[(

eηMt−[ηM ]t/2)p
]

≤ EP
[(

e(ρ−p)[ηM ]t/2)1/ε
]ε

, for ρ = p2/(1 − ε).
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3) Use 2) and a localisation argument to establish the following: If EP[e[M ]∞/2] < +∞ (called Novikov’s condition)
then for all η ∈ (0, 1), there exists p > 1 such that

EP
[

sup
t∈[0,∞)

E(ηM)p

]
< ∞, and hence EP

[
sup

t∈[0,∞)
E(ηM)

]
< +∞.

Deduce that then E(ηM) is a P–uniformly integrable (F,P)-martingale, so that EP[E(ηM)t] = 1, for all t ∈ [0, ∞].

4) Using 3) and part of the argument given in 2), show that (again assuming Novikov’s condition) for ε ∈ (0, 1)

1 = EP[E(ηM)∞] ≤ EP[E(M)∞]1−εEP[
e(1−ε)[M ]∞/2]ε ≤ EP[E(M)∞]1−εEP[

e[M ]∞/2]ε
, where η := 1 − ε.

5) Combine the above results to deduce that under Novikov’s condition, E(M) is a P–uniformly integrable (F,P)-
martingale.

1) First of all, we know that E(M) is a local martingale. Let us define stopping times τn = inf{t ≥ 0 : |Mt| ≥
n} for n ∈ N. Then E(M)τn are local martingales that are each bounded by a deterministic constant, so
they are all martingales. By Fatou’s lemma, we get that for t ≥ 0,

0 ≤ EP[E(M)t] = EP
[

lim inf
n→∞

E(M)τn
t

]
≤ lim inf

n→∞
EP[E(M)τn

t ] = 1.

This yields integrability. Clearly E(M) is adapted. Consider now 0 ≤ s ≤ t. Then

E(M)s = lim inf
n→∞

E(M)τn
s = lim inf

n→∞
EP[

E(M)τn
t

∣∣Fs

]
≥ EP

[
lim inf
n→∞

E(M)τn
t

∣∣∣∣Fs

]
= EP[E(M)t|Fs], P–a.s.

So E(M) is a (non-negative) supermartingale as required. We saw above that E(M) is bounded in
L1(R, F ,P), so E(M)t converges, P–a.s., to an (integrable) limit E(M)∞ as t → ∞. Assume now that
EP[E(M)∞] = 1. It will suffice to prove that for t ≥ 0

E(M)t = EP[E(M)∞|Ft], P–a.s.

By Fatou’s lemma, we see that E(M)t ≥ EP[E(M)∞|Ft], P–a.s. and hence

EP
[∣∣E(M)t − EP[E(M)∞|Ft]

∣∣] = EP[
E(M)t − EP[E(M)∞|Ft]

]
= EP[E(M)t] − EP[E(M)∞] ≤ 1 − EP[E(M)∞] = 0,

which immediately implies the claim.

2) Since M is bounded by a deterministic constant, so is E(ηM) and hence E(ηM) is a martingale. The
first claim is thus an immediate application of Doob’s inequality. For the second inequality, let us write(

eηMt−[ηM ]t/2)p = epηMt−ρ[ηM ]t/2e(ρ−p)[ηM ]t/2.

Applying Hölder’s inequality with exponents 1/(1 − ε) and 1/ε yields

EP
[(

eηMt−[ηM ]t/2)p
]

≤ EP
[(

epηMt−ρ[ηM ]t/2)1/(1−ϵ)
]1−ε

EP
[(

e(ρ−p)[ηM ]t/2)1/ε
]ε

.

If ρ = p2/(1 − ε), we see that

EP
[(

epηMt−ρ[ηM ]t/2)1/(1−ε)
]

= EP[E(η′M)t] = 1, with η′ := ηp/(1 − ε),

since E(η′M) is a martingale starting from 1. Combining the results in the two previous displays thence
yields the claim.
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3) Fix η ∈ (0, 1). In 2), we showed that for p > 1 and ε ∈ (0, 1),

EP
[

sup
t∈[0,∞)

E(ηM)p
t

]
≤

(
p

p − 1

)p

EP
[

exp
(

p2/(1 − ε) − p

ϵ
η2 [M ]∞

2

)]
,

whenever M is bounded by a deterministic constant. To see that this also holds without the boundedness
assumption, we may apply the above result to Mτn to see that

EP
[

sup
t∈[0,∞)

(
E(ηM)τn

t

)p
]

≤
(

p

p − 1

)p

EP
[

exp
(

p2/(1 − ε) − p

ε
η2 [M ]τn

2

)]
≤

(
p

p − 1

)p

EP
[

exp
(

p2/(1 − ε) − p

ε
η2 [M ]∞

2

)]
,

and letting n → ∞ (using monotone convergence) yields the required generalisation.

We will now show that we can take p > 1 and ε ∈ (0, 1) such that

p2/(1 − ε) − p

ε
η2 ≤ 1.

One way to see this is to write p = 1 + δ and Taylor expand to obtain

p2/(1 − ε) − p

ε
η2 = (1 + 2δ + O(δ2))(1 + ε + O(ε2)) − 1 − δ

ε
η2 = (1 + 2δ + O(ε) + O(δ2)/ε)η2, as ε and δ go to 0.

Since η2 < 1, the above inequality can therefore be satisfied by first choosing ε > 0 and then δ > 0
sufficiently small. For these values of p = 1 + δ and ε ∈ (0, 1), therefore

EP
[

sup
t∈[0,∞)

E(ηM)p
t

]
≤

(
p/(p − 1)

)pEP[
e[M ]∞/2]

< ∞.

In particular, E(ηM) is a uniformly integrable martingale and EP[E(ηM)t] = EP[E(ηM)0] = 1 for all t ∈ [0, ∞].

4) Firstly note that since EP[e[M ]∞/2] < ∞, EP[[M ]∞] < ∞ and hence M is an L2(R, F ,P)-bounded martingale.
Consider η = 1 − ε and ρ = 1/(1 − ε) for ε ∈ (0, 1). Then using the same argument as in 2), we see that

EP[E(ηM)∞] = EP[
eηM∞−[ηM ]∞/2]

≤ EP
[(

eηM∞−ρ[ηM ]∞/2)1/(1−ε)
]1−ε

EP
[(

e(ρ−1)[ηM ]∞/2)1/ε
]ε

= EP[E(M)∞]1−εEP[
e(1−ε)[M ]∞/2]ε ≤ EP[E(M)∞]1−εEP[

e[M ]∞/2]ε
.

We conclude by noting that EP[E(ηM)∞] = 1 as derived in part 3).

5) Finally, by taking ϵ → 0 in the inequality

1 ≤ E(E(M)∞)1−ϵ E
(

e⟨M⟩∞/2
)ϵ

that was derived in (iv), we get EP[E(M)∞] ≥ 1. By the argument in (i) also EP[E(M)∞] ≤ 1 and hence
EP[E(M)∞] = 1. The result then follows from the second part of 1).

Exercise 3
Let B be a standard Brownian motion (in some filtration satisfying the usual conditions). Fix t ≥ 0. The goal of this
exercise is to compute the moment generating function of

∫ t

0 B2
s ds. To this end, fix κ > 0 and t ≥ 0.

1) Show that the process D defined by

Dt
s := exp

(
− κ

∫ s∧t

0
BudBu − κ2

2

∫ s∧t

0
B2

udu

)
, s ≥ 0,

is a P–uniformly integrable (F,P)-martingale. Moreover, observe that
∫ s

0 BudBu = (B2
s − s)/2, P–a.s., for all

s ≥ 0.
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2) Now we define a new probability measure Q via dQ/dP := Dt
∞. Prove that under the measure Q, the process

W t
s := Bs + κ

∫ s∧t

0
Budu,

is a standard Brownian motion (in the given filtration). Deduce that under Q, Bt ∼ N
(
0, (1 − e−2κt)/(2κ)

)
. Use

this to prove that

EP
[
e− κ2

2

∫ t

0
B2

udu
]

= EQ
[
e κ

2 (B2
t −t)

]
= 1√

cosh(κt)
.

3) Let B̃ be another standard Brownian motion, independent of B. Show that∫ t

0

(
B2

u + B̃2
u

)
du

law= inf{s ≥ 0: |Bs| = t}.

Is it true that
∫ ·

0
(
B2

u + B̃2
u

)
du

law= inf{s ≥ 0: |Bs| = ·}?

1) Let us consider the local martingale M = −κ
∫ ·∧t

0 BsdBs so that D = exp(M − [M ]/2), P–a.s. We first
observe that second statement

∫ s

0 BrdBr = (B2
s −s)/2 for all s ≥ 0, P–a.s., is a consequence of Itô’s formula.

Moreover

0 ≤ Ds ≤ exp
(

− κ

∫ s∧t

0
BrdBr

)
= exp

(
κ/2(s ∧ t − B2

s∧t)
)

≤ eκt/2,

for all s ≥ 0. Therefore D is bounded by a deterministic constant and hence a uniformly integrable
martingale.

2) By Girsanov’s theorem W = B − [B, M ] is a local martingale under Q. Moreover, we have [W ]s = s for
all s ≥ 0, P–a.s. (under P and Q), so by Lévy’s characterisation, W is a standard Brownian motion in
the given filtration. Also

[B, M ] = −κ

∫ ·∧t

0
Bsds, P–a.s. (w.r.t. both P and Q).

We are now working with respect to Q. Let B′ be the unique strong solution to the following SDE (again
noting that W is a standard Brownian motion in the given filtration)

dB′
s = dWs − κB′

sds, B′
0 = 0, P–a.s. for t ≥ 0.

This is an Ornstein–Uhlenbeck process, so we know that B′
t ∼ N

(
0, (1 − e−2κt)/(2κ)

)
. It thus suffices to

prove that B′
t = Bt, P–a.s.. To see this, observe that

B′
s − Bs = −κ

∫ s

0
(B′

r − Br)dr, for all s ≤ t, P–a.s..

By an application of Gronwall’s lemma, we can deduce that B = B′ as required. Using this, we can
compute

EQ
[
e κ

2 (B2
t −t)

]
=

∫
R

e−x2/2
√

2π
exp

(
κ

2
(1 − e−2κt

2κ
x2 − t

))
dx

= e−κt/2
∫
R

1√
2π

exp
(

− x2

2
1 + e−2κt

2

)
= e−κt/2√

(1 + e−2κt)/2
= 1√

cosh(κt)
,
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as required. It only remains to express the expectation w.r.t. Q on the left-hand side in terms of an
expectation w.r.t. P. Using the definition of Q we get that

EQ
[
e κ

2 (B2
t −t)

]
= EP

[
exp

(
κ

2 (B2
t − t) − κ

∫ t

0
BsdBs − κ2

2

∫ t

0
B2

s ds

)]
= EP[

e− κ2
2

∫ t

0
B2

s ds]
.

3) The moment generating function of inf{s ≥ 0: |Bs| = t} is known, and for κ > 0

EP[
e− κ2

2 inf{s≥0: |Bs|=t}]
= 1

cosh(κt) = EP[
e− κ2

2

∫ t

0
B2

s ds]
EP[

e− κ2
2

∫ t

0
B̃2

s ds]
= EP[

e− κ2
2

∫ t

0
(B2

s +B̃2
s )ds]

.

If the moment generating functions of two non-negative random variables agree, they have the same
law, so the assertion follows. Finally, it is not true that∫ ·

0

(
B2

s + B̃2
s

)
ds

d= inf{s ≥ 0: |Bs| = ·},

since the process on the left-hand side is continuous while the process on the right-hand side has jump
discontinuities a.s. (we may observe that it is increasing and is left-continuous however).

Exercise 4

Fix a filtered probability space (Ω, F ,F,P). Let B be an (F,P)–Brownian motion, µ a bounded F-adapted and measur-
able process, and fix some x0 ∈ R.

1) Show that there exists a unique solution to the SDE

Xt = x0 +
∫ t

0
µsds +

∫ t

0
XsdBs, t ≥ 0,

which is given by

Xt = E(B)t

(
x0 +

∫ t

0
E(B)−1

s µsds

)
, t ≥ 0.

In particular, if x0 ≥ 0 and µ is valued in R+, show that X is also valued in R+.

2) Fix now (x1, x2) ∈ R2, as well as two maps a1 and a2 from R+ ×R to R which are Lipschitz continuous and with
linear growth with respect to their second variable, uniformly in the first one. Assume that a1 ≥ a2 and x1 ≥ x2.
Show that there are unique solutions to the SDEs

Xi
t = xi +

∫ t

0
ai(s, Xi

s)ds +
∫ t

0
Xi

sdBs, t ≥ 0, i ∈ {1, 2},

and that X1 ≥ X2.

1) Once again, we have here an SDE with uniformly Lipschitz-continuous coefficients, so existence and
uniqueness of a strong solution is immediate. Then it suffices to apply Itô’s formula recalling that

dE(B)t = E(Bt)dBt,

to verify that the solution is given as in the statement. The non-negativity is then obvious.
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2) This questions is about a technique called linearisation. First, the assumptions made ensure that X1

and X2 are well-defined as unique strong solutions to their respective SDEs. Then, the point is to notice
that we can always write

a1(s, X1
s ) − a2(s, X2

s ) = a1(s, X1
s ) − a2(s, X1

s ) + λs(X1
s − X2

s ),

where
λs := a2(s, X1

s ) − a2(s, X2
s )

X1
s − X2

s

1{X1
s ̸=X2

s },

is a bounded, measurable and F-adapted process by the Lipschitz property of a2. Writing δX := X1 −X2,
we get

δXt = (x1 − x2) +
∫ t

0

(
a1(s, X1

s ) − a2(s, X1
s ) + λsδXs

)
ds +

∫ t

0
δXsdBs.

If we now write Yt := e−
∫ t

0
λsds

δXt, we get

Yt = (x1 − x2) +
∫ t

0
e−

∫ s

0
λudu(

a1(s, X1
s ) − a2(s, X1

s )
)
ds +

∫ t

0
YsdBs,

and it then suffices to apply 1) with µs := e−
∫ s

0
λudu(

a1(s, X1
s )−a2(s, X1

s )
)

which is non-negative by assump-
tion.
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